Klausur 3

Formale Grundlagen 2

17. Januar 2003

Zu jedem Buchstaben muß entweder ja oder nein angekreuzt werden.

Aufgabe 1 Seien $f_1(n) = n^2$, $f_2(n) = n + 1000$, $f_3(n) = 2n^2$, $f_4(n) = e^n$ mit e = 2,71228... Fragen:

B ja	Ist f_2 von der Ordnung f_1 ?
C ja	Sind f_3 und f_1 von gleicher Ordnung?
D nein	Ist f_4 von der Ordnung f_1 ?
E nein	Sind $f_4(f_1(n))$ und $f_4(f_3(n))$ von gleicher Ordnung?
	Offenbar gibt es keine Konstante C , so $da\beta$ $e^{2n^2} = e^{n^2} \cdot e^{n^2} \le Ce^{n^2}$ für ein gewisses N und alle $n > N$ gilt.
	$e^{-i\alpha} = e^{i\alpha} \cdot e^{i\alpha} \leq Ce^{i\alpha}$ fur ein gewisses iv una aue $n > 1$ v gui. Es gilt zwar, da β $f_4 \circ f_1$ von der Ordnung $f_4 \circ f_3$ ist, aber nicht
	umgekehrt.

Aufgabe 2 Betrachten Sie die folgenden Probleme.

Ist f_1 von der Ordnung f_2 ?

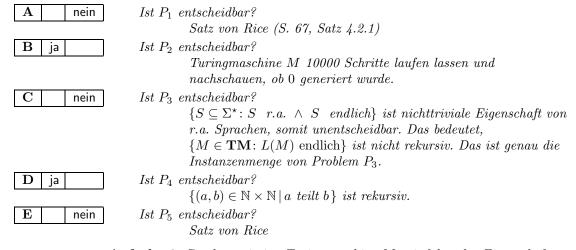
nein

Problem P_1 : Enthält die akzeptierte Wortmenge L(M) einer Turingmaschine M ein Palindrom?

Problem P_2 : Generiert eine Turingmaschine das Wort 0 in höchstens 10000 Schritten?

Problem P_3 : Ist die akzeptierte Sprache L(M) einer Turingmaschine M endlich?

Problem P_4 : Ist das Gleichungssystem ax = b mit $a, b \in \mathbb{N}$ lösbar in \mathbb{N} ? **Problem** P_5 : Gilt $L(M_1) = L(M_2)$ für Turingmaschinen M_1, M_2 ? **Fragen**:



Aufgabe 3 Gegeben sei eine Turingmaschine M mit folgender Eigenschaft: Wenn M ein Wort akzeptiert, dann tut sie das in weniger als 1000 Schritten.

Fragen:

Fragen:	
A ja B ja C nein	Ist $L(M)$ rekursiv? Sei M so eine TM . Sei w irgendein Wort. Wenn, nach Eingabe von w , die Maschine in weniger als 1000 Schritten stoppt, dann hat sie entweder einen Finalzustand erreicht - $w \in L(M)$ - oder nicht - $w \notin L(M)$. Falls M nach 1000 Schritten nicht gehalten hat, muß $w \notin L(M)$ gelten, da, auf Grund ihrer speziellen A rt, sie ja sonst in < 1000 Schritten gestoppt hätte. Die obige Beschreibung ist eine Konstruktionsanweisung für eine TM , welche $L(M)$ erkennt, i.e., $L(M)$ ist rekursiv. BEMERKUNG: Das ist keine Eigenschaft der Sprache, es ist eine Eigenschaft von Turingmaschinen. Satz von Rice hier nicht anwendbar Ist $L(M)$ rekursiv aufzählbar? Natürlich, da rekursiv Ist $L(M)$ notwendigerweise endlich? Nein. Denkbar wäre eine Turingmaschine M , die genau die Worte akzeptiert, welche mit 11 beginnen. Sie checkt das sicher
	in < 1000 Schritten, aber $L(M)$ ist unendlich. Ist die Eigenschaft von $L(M)$, das leere Wort zu enthalten, entscheidbar? Gegebene TM auf dem leeren Wort 1000 Schritte laufen lassen. BEMERKUNG: Dieses ist kein Problem rekursiv aufzählbarer Sprachen. Es ist eine konkrete Turingmaschine gegeben, die, auf Grund ihrer speziellen Natur, einen Entscheidungsalgorithmus zuläßt. fgabe 4 Sei $\Sigma = \{0,1\}$ und $L_1, L_2 \in \Sigma^*$. Für $i=1,2$ bezeichnen wir mit $= \Sigma^* \setminus L_i$ das Komplement von L_i .
	$= 2 - \sum_{i=1}^{n} L_i $ was Komptement von L_i .
A nein	Wenn L_1 und $\overline{L_2}$ rekursiv sind, ist dann $L_1 \cup L_2$ regulär? Wähle eine nicht-reguläre Sprache L_1 und $L_2 = \emptyset$.
В ја	Wenn $\overline{L_1}$ endlich ist, ist dann L_1 regulär? Offenbar ist jede endliche Sprache regulär, also auch $\overline{L_1}$. Es gibt also einen DEA M mit $L(M) = \overline{L_1}$. Wir können daraus sicher einen DEA M' konstruieren, der ein Wort w genau dann akzeptiert, wenn dies M nicht tut. Dann gilt aber $L(M') = L_1$ und L_1 ist damit regulär.
C nein	Wenn $\overline{L_1}$ rekursiv aufzählbar ist, ist dann auch L_1 rekursiv aufzählbar? Betrachte die Diagonalsprache L_d als L_1 .
D ja	Wenn $\overline{L_1}$ rekursiv ist und L_2 die Menge aller Wörter ist, die mit einer 1 beginnen, ist dann $L_1 \cap L_2$ rekursiv aufzählbar. L_1 ist rekursiv und damit auch rekursiv aufzählbar. L_2 ist sogar regulär und damit auch rekursiv aufzählbar. Der Durchschnitt zweier rekursiv aufzählbarer Sprachen ist wieder rekursiv aufzählbar.
E nein	Sei $L_1 \neq \Sigma^*$ regulär und L_2 rekursiv. Ist die Sprache $L_1 \cap L_2$ regulär? Wähle als L_1 die reguläre Sprache aller Wörter, die mit einer 1 beginnen, d.h. $L_1 = \{1\} \circ \Sigma^*$. Sei L irgendeine nicht-reguläre aber rekursive Sprache über Σ . Setze $L_2 := \{1\} \circ L$. L_2 ist sicher rekursiv, aber nicht regulär. Allerdings gilt $L_2 = L_1 \cap L_2$.
F ja	Sei $L_1 \neq \Sigma^*$ regulär und L_2 rekursiv. Ist die Sprache $L_1^* \cup L_2$ rekursiv aufzählbar? Sei r ein regulärer Ausdruck, so daß $L_1 = L(r)$, dann ist $L(r^*) = L_1^*$ regulär und damit rekursiv aufzählbar. L_2 ist als rekursive Sprache natürlich rekursiv aufzählbar. Die Vereinigung zweier rekursiv aufzählbarer Sprachen ist rekursiv aufzählbar.